Mančester, godina 1952. Jedan čovek je pokraden i nedugo potom, u izjavi policajcima naivno otkriva da je u vezi sa mladjim čovekom iz istog grada. Po tadašnjem zakonu, nije im ostavljena druga mogućnost do privodjenja i podizanja optužnice za „veliku nepristojnost suprotnu Sekciji 11 Amandmana 1885 Krivičnog zakona“. Čekalo ga je sudjenje...
26 godina ranije
Dorset, škola Šerborn, godina 1926. Četrnaestogodišnji mladić, nakon puta dugog 100 km, biciklom stiže na početak prvog polugodja. Podvig su propratile lokalne novine a taj entuzijazam će se kasnije pretvoriti u veliku ljubav prema nauci i eksperimentima i pratiće ga kroz čitav život i u svemu što radi. Jedini drug koji je sa njim delio istu viziju a koji je po njegovim i tvrdnjama drugih bio darovitiji, Kristofer Morkom umire 1930. godine od tuberkuloze. To je dogadjaj koji je najverovatnije odredio njegov dalji put, darujući svetu genija - jednog od najzaslužnijih za razvoj računarstva. Kako je Morkom , kao izuzetno nadaren, već dobio stipendiju za Kembridž, Alan Tjuring odlučuje da konkuriše za taj koledž.
Kembridž, Specijalna i Univerzalna mašina
1931. godine Tjuring je primljen na Kembridž gde je imao prilike da se nadje u okruženju velikih umova poput Bertranda Rasela (Nobelova nagrada za književnost 1950.), Alfreda Norta Vajtheda (Principia Mathematica), Ludvig Vitgenštajn (Tractatus Logico-Philosophicus, Philosophical Investigations)... Taj period je karakterističan po jednoj debati o prirodi matematike i logike. Matematika je bila u krizi jer je logicar Kurt Gedel pokazao da postoji odredjen broj problema koji se logički ne mogu rešiti. Time je srušen čitav jedan aksiom da je moguće odgovoriti na sva matematička pitanja. U nadi da će tako „spasti matematiku“, matematičari su pokušali da identifikuju sva „neodlučiva pitanja“. Cela polemika inspirisala je Tjuringa da napiše svoj najuticajniji rad iz oblasti matematike – „O izračunljivim brojevima“.
U tom delu govori se o apstraktnoj mašini koja bi trebala pomoći da se otkriju sva „neodlučiva pitanja“. Ta mašina izvršavala bi unapred odredjen algoritam (niz koraka). Jedna mašina bi npr. izvršavala jednu matematičku operaciju, gde bi se potrbni parametri unosili preko jedne papirne trake a rezultat bi se ispisivao na drugu papirnu traku. Kako je važilo „jedna mašina – jedan algoritam“, taj apstraktni model je nazvan „Specijalna Tjuringova mašina“.
Kako je već bio zamislio čitav niz specijalnih mašina, sledeći korak je bio „stvaranje“ (sve je teorijski) jedne fleksibilne mašine koja bi bila (sada je tako možemo nazvati) programabilna i sposobna da izvrši bilo koju funkciju. Izbor funkcija bi se takodje vršio ubacivanjem odabranih traka. „Univerzalna Tjuringova mašina“, kako ju je nazvao, u teoriji je trebala dati odgovor na svako pitanje koje je imalo logičan odgovor. Iako se pokazalo da ne može da identifikuje sva „neodlučiva pitanja“, ovaj apstraktni model predstavlja prvi moderni programabilni računar, iako je te 1937. godine postojao samo u teoriji. A i to će se ubrzo promeniti.
Možda jednako bitna stvar njegovim dostignućima u nauci, bilo je okruženje u kojima su ona postizana. Tjuring je u jednoj izuzetno tolerantnoj sredini imao veliku podršku. Čak je i homoseksualnost na univerzitetu bila široko prihvaćena pa je bio lišen brige o tome da li će neko saznati za njegovu orjentaciju i šta će na to reći.
Pre nastavka priče preporučujem mali diskurs na tekst o Enigmi. Drugi deo možete pročitati OVDE a ukoliko nemate vremena da na Internetu ispratite ceo tekst možete ga skinuti u PDF formatu.19.03.2008. 14:44
Slavko Ilic on 07.07.2008. 21:13
Postavlja se pitanje, da li je nauka - nauka kada i pored sve edukacije neko ostane tako uskog uma da mu sve moze poremetiti seksualna orjentacija genija koji nam je obezbedio napredak ravan skoku u buducnost?
Autor ovog bloga je zaljubljenik u informacione tehnologije i njihovu primenu u svakodnevnom životu. Zastupnik pozitivne strane priče. Samostalni aktivista u poslu sa zmajevima. Ne lovi ih, komunicira sa njima. Ne boji se vetrenjača jer zna kako rade. Jednom rečju - Techtivist. Za sve ostale informacije i pitanja, tu su kontakt podaci.
Facebook: /ITkutak Twitter: @ITkutak Mail: ITkutak.com@gmail.com
Sta Vi mislite?